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We examine an encounter game problem for linear objects whose equations of 

motion are integrally continuous relative to a certain parameter. We establish 
sufficient conditions ensuring, in the regular case, the continuity of the game’s 

value and the semicontinuity of the set of the players’ optimal motions with re- 
spect to variations of this parameter. 

1. Let the motions y(t) of a pursuing object and z (t) of a pursued object be des- 
cribed by the linear differential equations 

Y’ = A(l) (t, h) y + Bell (t, h) u, u E P (1.1) 

2’ = A@) (t, n) z + m (t, h) 21, ?I E Q (1.2) 

Here y 5 {yi, . . ., y,} and z = {zr, . . . , z,} are the phase coordinate vectors 
of the controlled objects; u and u are r-dimensional control vectors; P and Q are 
bounded, convex and closed sets describing the constraints on the players’ controls ; 
Aqt, h) and B(j) (t,h), 0’ = 1,2) are matrices of appropriate dimensions, continuous 

in f E Ita, 91 and bounded in h ; h E A, h is some set of values of parameter h, 
containing the limit point 3Ls. 

This paper’s purpose is to study the encounter game problem (see [I], Sect. 7) for the 
objects (1.1) and (1.2) when the game’s payoff is determined by the quantity y 161 = 

II {!I wm - {z [sl},,,II, where /zII is the Euclidean norm ofvector z and 1~)~ is 

the vector composed of the first m components of vector 5. In the regular case we investi- 
gate the dependence on i of the game’s value and of the players’ optimal motions, under 
the condition that the right-hand sides of Eqs. (1.1) and ( 1.2) are integrally continuous I?, 
31 functions of parameter h at the point ha. The presentation of the material relies on the 
concept of extremal construction and on the extremal aiming rule, justified in [l]. 

Definition 1. 1. Astrategy Ux + U (t, y, z, A) is said to be integrally semi- 

continuous in the parameter h at the point h,, with respect to the matrix B(l) (t, h) if: 
(1) for each h E A the sets u (i!, R, 2, A) are convex, closed and upper-semicontinu- 
ous with respect to inclusion as t, y and z vary in a neighborhood of each possible po- 
sition ; (2) the matrix B(l) (t, A), 8 e [to, fi] is bounded and integrally continuous in 

parameter h at the point As; (3) for any family of vector functions 2 (t, h) - {y (t, 
h), z (t, h)}, continuous in 3L and such that the limit relation lim zc (t, h)= 2 (t, A,) 
is satisfied uniformly relative to t E It,, 6 J as h -+ ho , the set 

s II(‘) (f A) u (z y (z h) 2 (7, h), h) ch , , ,, 
to 

is upper-semicontinuous with respect to inclusion as the parameter h varies in a neigh- 
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borhood of point Iz, for all t E [to, 61. 

The strategy VA + T’ (6 Y, 2, h), integrally semicontinuous in parameter h at 
point h, with respect to matrix Bfa) (t, h) , is defined similarly. The integrally semi- 

continuous strategies U&and VA are admissible for each h E h ; therefore, for each 

h E A Eqs. (1.1) and (1.2) possess [l. 4, 5] a family of motions X (Uh, Va; to, y”, 
20, A) consisting of the absolutely cont~nuo~ solutions 5 f t, h3 == {Y It, hl, z f t, hl ) 
of these equations, generated by the strategies Uh and PA for an arbitrary initial position 
(t,, y“, 8). On the basis of the reasonings and results of [l-5] the validity of the fol- 

lowing statement can be confirmed. 

Theorem 1. 1. Let the admissible strategies UA and VA be integrally semiconti- 

nuous in parameter 3, at point A,, with respect to the matrices B(l) (t, A) and B(*) (t, A) 
respectively, and let the matrices A(‘) (t, h) and dfa) (8, A) be bounded and integrally 

continuous in h at point h,; then for any preselected number CI > 0 we can find a 

neighborhood Q (h,) of point 3i0 such that: 
1) For all h E Q (h,) the families of Euler polygonal lines X(A) (Uh, VA; t,,, 

Y”t so, 71,) lie in the oc-neighborhood of the family XC*) (uho, 7~~ ; to, Y”, I!‘, ho). 
The neighborhood 52 (A,,) can be chosen independent of the partitioning A and of the 
initial position {to, y”, I?}, from an arbitrary bounded region r in space {t, Y, 2). 

2) For all h E 51 (A,J the families of motions X (Vi, VA; t,,, y”, 2, h) lie 
in the ~-neighborh~d of the family X (Uh, Yx,; te, y”, z”, A,). The neig~or~~d 
Q (h,) can be chosen independent of the initial position {to, y”, z”} e I’. 

2, We consider the controlled system 

dxldt=A(z,h)x+B(z,h)w, IDER (2.1) 

where A (z, ?L) and B (x, k) are matrices continuous in 2, bounded in h E A and 
integrally continuous in parameter h at point A,; R is a convex, closed and bounded 

set. Let G (6, t, X, h) be the attainability region of system (2.1) in the m-dimensional 

space (q> of points Q ;= {zfm from the state z = t > 4 and z (L) = r by the 
instant it = 6. For each h e A the attainability region G (6, t, z, A) is a convex, 

closed and bounded set whose support function p [I, 6, t, z, h] is described by the 
equality 

P I& 6, t, z, Al = I’(X P, 1, %I & + (2.2) 

6, z, ?u] B (z, I& 20 (2, h) dz 

where x [6, z, A] is the fundamental matrix of Eq. (2.1) with w s 0, X [z, z, 
11 = E is a unit matrix ; I is an arbitrary ~-dime~onal unit vector, jJ111 = 1. 

We consider the set w” (I, z, A) of program controls w” (I, z, A+) e a, 4 ;\( 
t < Z < 6, satisfying the maximum condition 

I’ {X [S, b, h] B (z, A)},” wO(Z, z, h) = max t’ {X @, T, Al B (% %s W (2.3) 
lBER 

Condition 2. 1. For all t, z and I theset 
= 

s B(G, A) w“(l, LVd5 
t 

is upper-semicontinuous with respect to inclusion as parameter Iz varies in a neighbor- 
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hood of point h,,. 

L e m m a 2 . 1. If the controlled system (2.1) satisfies Condition 2.1 and if the mat- 
rices A (T, A) and B (z, h) are bounded and integrally continuous in parameter h at 
point &, , then the attainability region G (0, t, x, A) of system (2.1) is continuous in 

parameter h at point lie. 
P r o o f . By virtue of Condition 2.1 the limit of any convergent sequence 

(2.4) 

is contained in the set a 

s B (r, ho) W* (I, r, A,,) CEZ 
t 

for any vector I and any instant t > tQ. From the results in [Z, 31 it follows that the 
fundamental matrix X it, ‘t, hl is continuous in parameter h at point ~~,uniformly 
relative to t, 7 E ito, @], Consequently, the equality 

lim ~Z’~XIB,~,hklR(r,hk)}mwD(Z,+,hb)dr= (2.5) 
++‘A0 t 

8 

max s 2’ {X IS, T, bl B (z, hk)L w (z, h) dx 
WER i 

is valid for any convergent sequence (2.4) and for arbitrary 1 and t . Prom (2.5) and 

the continuity of matrix X [a, t, ?L] it follows that the support function p [I, e, t, x, 
J,] , given by (2.2) of the attainability region G (6, t, 2, A) is continuous in h at 

point ho. 
Using the continuity of the attainability region G (6, t, x, h) with respect to h at 

point ha, it is easily verified that the follow~g assertion holds. 
Lemma 2.2. If the controlled system (2.1) satisfies Condition 2.1 and if the mat- 

rices A (z, h) and B (2, A) are integrally continuous in parameter k at point ho, then 

the set 5 

is up~r-semicont~uo~ with respect to inclusion as parameter h varies in a neighbor- 
hood of point ho for all t and z, for any family of unit vector functions I (5, h), con- 
tmuws in 5 and such that the limit relation lim I (5, A) = I (5, A,,) as h --f h, is 
satisfied uniformly relative to 5. 

8 l Let pc” tz, 6, t, y, hl and ~(‘1 il, @, t, z, h) be the support functions of the 
a~a~abili~ regions G@‘(f+, t, y, A) and G’2)(*, t, z, h) of the pursuing object and 
pursued object,respectively, by the instant t = 6 from the position &’ ft] = &! and 

z tt1 = Z. We consider the quantity 

so (6 y, x, A) = (3.1) 
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max (1’ (2 [tt, t, h] z}, - 
llrp1 
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I’ {Y [a, 4 Al &I + 

Definition 3. 1. We say that the regular case takes place if a neighborhood 
Q (ho) of point ho exists such that the maximum in the right-hand side of equality 

(3.1) is achieved for all h E B (A,) on the unity vector l“ (t, y, z, h) for all posi- 
tions {t, y, z} that can occur in the game being considered and for which 8” (4 g, z, 

h)>O* 
We assume that the right-hand sides of Eqs. (1.1) and (1.2) satisfy the following re- 

quirements. 

Condition 3. 1. (1) Matrices A(i) (t, h) and Bil (t, A,), u= 1, 2) are con- 
tinuous in t, bounded in h and integrally continuous in k at point 1,. (2) Condition 
2.1 is satisfied for Eqs. (1.1) anA (1.2). 

The validity of the following statements arises form the results in [l, 61 and Lemma 

2.1. 
L e m ma 3. 1. If the right-hand sides of Eqs. (1.1) and (1,2) satisfy Condition 3.1, 

then 8” (t, y, 2, A) of (3.1) is a continuous function of the game position {t, y, 2) 
and of parameter h at point As. 

Lemma 3.2. If the right-hand sides of EC&( 1.1) and (1.2) satisfy Condition 3.1 
and if the regular case takes place, then the vector P (t, y, z, h) depends continuously 
on the game position {t, y, z} and on parameter h at noint ha. 

The players’optimal strategies U,,’ + U” (t, .rl, z, h) and Vh” t T’” (t, y, z, h), 
(see [1]) implying the existence of the saddle point in the encounter game, are deter- 
mined by the extremal aiming rule, i, e. the sets u” (t, y, z, h) and V” (t, y, z, h) 

in the region e” (t, y, z, A) > 0, t ( 6 consists of all those vectors u E P and 
v E Q that at the instant t satisfy the maximum condition (2.3) with 7 = t and 

I = I” (t, y, z, AJ; however, if 8 (t, y, z, 3L) = 0, then u” (t, y, z, A) = P and 
v”(t, y, z, A) = Q. From Lemmas 3.1, 3.2, 2.1 and 2.2 it follows that the optimal 
strategies Uh” and VA” are integrally semicontinuousin parameter A at point A,, if 

Condition 3.1 is satisfied and the regular case takes place. Tuning to Theorem 1.1, 
we arrive at the following conclusion, 

Theorem 3. 1. If the right-hand sides of Eqs.(l. 1) and (1.2) satisfy Condition 
3.1 and the regular case takes place, then: (1) the value 8 (t,, y”, 8, A) of the en- 
counter game problem for objects (1.1) and (1.2) is continuous in parameter h at point 
Aa and in the initial position {t,, I/“, 2”) from an arbitrary bounded region r in space 
{t, y, z}; (2) the set of optimal approximate motions X(A) (U$, VLo; t,,, go, d', h) 
is upper-semicontinuous with respect to inclusion as h varies in a neighborhood of point 
AO, uniformly with respect to all partitionings A of the interval ito, 61 and all initial 
positions {to, y”, 2”) E I?; (3) the set of optimal motions X (Uh', VA'; to, y', 2, h) 
is upper-semicontinuous with respect to inclusion as parameter A varies in a neighbor- 
hood of point A,,, uniformly with respect to all initial positions {to, y”, z”} E I’. 
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4. We consider an encounter problem for objects described by the differential equa- 
tions 

Y,’ = Y,. Y,’ = cf (t, A) q, Y,’ = Y,, Y,’ = a (I, J”) u2 

21 * =: 3. z2’ = b (t, k.) zslr z3’ = zq, z4’ = b (I, h) r2: 

$2 _t u2? < p, 2:12 -I- L.22 f v2, p > v 

n(f,h)=. f 
1 +acost/a, h#O 1 + bsint/I., lr#O 

\ 1, h= 0, 
b (t, a) = 

4, ?.=- 0 

a=const, b=const, /aIdi, lbl<l 

Let the game’s payoff y [(1] be determined by the equality 

y Ifi1 = I (Y1@) - 21 PII2 + (Ys (6) - 23 (ft))+ 

We can verify that the hypotheses of Theorem 3.1 are satisfied for all 1. Carrying out 
the necessary calculations, we obtain 

q = I(21 + (6 - 1) sY + (za + (6 - t) “,)2P 

(Zi = vi - Zi, i=l, 2, 3, 4; l;=u--v) 

The optimal strategies U,” and lJhO are described as follows: (1) if E’ (1, y, z, A) > 0, 

then the sets U” (l, y, t, A) and V“ (t, y, z, I) consist of the single points ud [t] = ~1“ 
and v” [t] = vl”, respectively; (2) i’f e” (t, y, z, h) = 0, then U” = 1’ and V‘ = Q. 

From this example it is easy to ascertain that the requirement of integral continuity 
with respect to the parameter in the right-hand sides of Eqs.( 1. 1) and (1.2) is an essen- 
tial one. In fact,if we assume that a (I, 0) = b (t, 0) = k, where k is an arbitrary con- 
stant not equal to unity, then the functions a (it 1) and b (t, 1) are not integrally con- 
tinuous in 1 at the point h = 0. When h = o we have 

E’ (t, y, z, 0) = ‘1 - ‘/a 1 k 15 (6 - 4’ 

and, consequently, in such a case a0 (t, y, Z, h) is not continuous in h at the point h. = 0. 
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